Researchers at the University of Latvia develop a unique device that will determine how for improve treatment of adenocarcinoma patients

Author
Ilze Kuzmina (Latvijas Radio Ziņu dienesta korespondente)

January 13, 2025

medicine research

Each year, the Latvian Academy of Sciences highlights the most outstanding work by researchers in both theoretical and practical science. This year, awards will be presented to 12 groups of scientists. Some of these studies have been ongoing and developing for years. One of last year's achievements in Latvian science is the creation of a unique device at the University of Latvia (UL) that will help determine how to improve the treatment for adenocarcinoma patients.

Pancreatic adenocarcinoma is one of the most aggressive types of cancer. Approximately 90% of patients diagnosed with it lose the battle with the disease within five years, as this tumor often does not respond to standard therapies.

This means that in order to fight this disease, individualized treatment approaches must be developed. Scientists at the University of Latvia (UL) are currently on the path to developing personalized therapy.

In collaboration with medical professionals, researchers obtain adenocarcinoma cells from operated patients, which they then propagate in the laboratory and try to understand which medications best eradicate the disease. To effectively deliver chemotherapy drugs to the tumor through blood vessel cells, scientists have created a unique microfluidic device in the National Research Program "Photonics," which mimics the interaction between the tumor and blood vessels. The device is the size of a matchbox, and in its center, researchers place microchips with tumor cells through which drugs travel via very fine channels.

Attēlā LU tenūrprofesore medicīnā Una Riekstiņa pie īpaša skapja, kurā temperatūra ir kā kā cilvēka organismā. Šajā skapī ievieto mikrofluīdikas ierīci, kad audzēja šūnās ievada medikamentus Foto: Ilze Kuzmina
In the image, UL Professor of Medicine Una Riekstiņa stands by a special cabinet where the temperature is set to mimic that of the human body. This cabinet is used to place a microfluidic device when introducing medications into tumor cells. Photo: Ilze Kuzmina

The UL Professor of Medicine and leading researcher Una Riekstiņa explains: "In our small, miniature device, we can simulate a tumor, showing both the blood vessels and the tumor itself. What we can imitate is administering drugs through the flow, and then those drugs will be absorbed through the blood vessels in our small device, cross the vascular barrier, and reach the tumor cells. Then we can measure whether the tumor cells react to it. Essentially, effective drugs will be those that kill tumor cells. We can measure the signal that flows out of our device and indicates that the tumor cells do not like the drugs we provided."

Foto: Ilze Kuzmina
Photo: Ilze Kuzmina

Thus, just as in the human body, in the device, medications reach the tumor through blood vessels. Researchers also have the opportunity to observe whether the medication harms the blood vessels, allowing them to assess potential side effects. The study examines what happens to tumor cells over a longer period, for example, 50 days after therapy.

Another aspect revealed by the device is whether tumor cells detach and travel through the blood vessels. If this were to happen in a real human body, metastases would form.

The device can also signal if tumor cells do not respond to the medications and continue to grow.

Importantly, the device allows testing multiple medications on tumor cells simultaneously, which would not be possible in a patient's body, enabling researchers to compare results.

Additionally, the device can help identify new biomarkers that could be useful for tumor diagnostics in the future. The researcher explains that biomarkers are molecules secreted by the tumor, revealing its presence in the body.

Attēlā LU tenūrprofesore medicīnā Una Riekstiņa (stāv) un LU Farmācijas maģistra studiju programmas 1.kursa students Kristaps Sunteiks Aseptiskajā šūnu kultūru laboratorijā pie sterilā galda, kurā pētnieki strādā ar aizkuņģa dziedzera audzēja organoīdiem. Organoīdi ir audzēja šūnas, kas pavairotas laboratorijā. Foto: Ilze Kuzmina
In the image, UL Professor of Medicine Una Riekstiņa (standing) and Kristaps Sunteiks, a first-year student in the UL Master's Program in Pharmacy, are in the Aseptic Cell Culture Laboratory at a sterile workstation where researchers work with pancreatic tumor organoids. Organoids are tumor cells cultivated in the laboratory.
Photo: Ilze Kuzmina

It should be noted that similar personalized therapies are being developed by scientists worldwide, aiming to adapt them for the treatment of various tumors.

When asked about the uniqueness of the device developed in Latvia, Riekstiņa responds: "The uniqueness lies in the fact that this device has a unique design created by our research group. We collaborate with the Institute of Solid State Physics, where these microfluidic chips are produced. These are small plates with embedded channels. These channels are matchstick-sized or even smaller, and we can connect them to tubes, add a pump, and circulate fluids. That’s microfluidics. It's called 'micro' because everything is at a very small scale, mimicking what happens in the human body."

The uniqueness also extends to how the blood flow imitation is constructed.

"This is a rapidly growing field, and it is anticipated that in 4–5 years, such a microfluidic organ-on-chip tool could assist doctors in deciding on the most effective therapy for a particular patient. This is also our goal. We are eager to develop this technology, but we need to build a statistical evidence base, test samples from multiple patients, and demonstrate that this method can reliably predict therapy sensitivity," Riekstiņa explains.

So far, researchers have analyzed the response of tumor cells from only three patients to medications administered using the device. Within the context of this study, scientists are not yet able to provide treatment recommendations to medical professionals. Before doing so, a broader evidence base is needed, and the new device must be certified as a medical device.

Additionally, efforts must focus on making the device more user-friendly. Riekstiņa states: "Only technology that is both easy to use and delivers reliable results will succeed. So, we are still in the development process."

 

Recommended articles

biomedicīna medicine

RTU Scientists Commercialise Unique Metabolic Research Expertise in the Baltics

Having gained extensive experience in metabolism research in Austria and at Riga Technical University (RTU), Kristaps Kļaviņš, lead researcher at the RTU Faculty of Natural Sciences and Technologies, together with Professor Jānis Ločs, has founded a medical technology startup called Metabonet. The …

Labs of Latvia

September 11, 2025

research

Latvian Researchers Invited to Share Their Views on Academic Integrity

Until September 30, researchers in Latvia are invited by the University of Latvia (LU), in cooperation with the Ministry of Education and Science, to complete an anonymous survey on academic integrity and responsible research. The study aims to investigate how Latvian researchers understand the fun…

researchLatvia

September 8, 2025

research science communication

"Science Requires Freedom of Thought." Introducing Tenured Professor Maija Radziņa

The Public Relations Department of Riga Stradiņš University continues its series of articles about RSU tenured professors. This time, the interview focuses on M. Radziņa’s journey and passion for medicine and science. “Technologies have become closely intertwined in a natural symbiosis to fulf…

Linda Rosenbach, RSU Public Relations Department

September 8, 2025

research

Studying Fish Resources and the Ecosystem in Lake Burtnieks

What is the current state of fish resources and the ecosystem in Lake Burtnieks? This will be clarified through data analysis following the recently conducted scientific fishing in the lake. These studies will form the basis for future decisions by Valmiera Municipality on the management of Lake Bu…

Gunta Matisone, Latvian Radio

September 3, 2025