The Physics of Snowflakes: Why Is Every Snowflake Unique?

Author
researchLatvia

January 3, 2025

natural sciences research

Snowflakes are among nature's most exquisite works of art - each is unique, shaped under complex and ever-changing conditions. Why do snowflakes always have six arms? How do they develop such intricate yet symmetrical forms? From a scientific perspective, snowflake formation reveals how ice crystals emerge, develop patterns, and achieve their unparalleled uniqueness.

The essence of science is understanding what things are made of and how they work.

A snowflake is a single ice crystal in which water molecules are arranged in a precise hexagonal lattice.

Snow crystals form when water vapor in the air turns directly into ice, bypassing the liquid state. As more water vapor condenses onto the forming snow crystal, it grows larger and more elaborate, with intricate patterns emerging in the process. It is essential to note that snow crystals are not frozen raindrops; those are referred to as sleet.

Why such complex, symmetrical shapes?

The formation of a star-shaped snow crystal begins with a tiny hexagonal plate. As the crystal grows, arms extend outward. Falling through clouds, it encounters constantly changing temperatures and humidity levels, shaping each arm slightly differently at each stage.

Sniegpārslas veidošanās process. Avots: snowcrystals.com
The process of a snowflake formation. Source: snowcrystals.com

The exact shape of the crystal depends on its specific journey through the clouds. All six arms undergo identical changes simultaneously, leading to complex yet symmetrical patterns. Since no snow crystal follows the exact same path, no two snowflakes are completely identical. The six arms grow independently, yet under similar random conditions, they develop a comparable form, resulting in mostly symmetrical crystals.

Why six arms?

The six-arm symmetry of a snow crystal arises from the arrangement of water molecules in its hexagonal lattice. As this ice crystal model rotates, the hexagonal structure becomes apparent. The crystal has a three-dimensional form, and snowflakes are similarly three-dimensional. Star-shaped plates are thin and flat, while other shapes may vary. Snow crystals begin as hexagonal prisms, each with two bases and six prism faces.

There are also irregular snowflakes, as many snow crystals are not perfectly symmetrical. They grow rapidly, sometimes leading to random side branches. These combined processes occasionally result in both complex and symmetrical or asymmetrical crystals. Snowflake formation is intricate, and much remains unexplored.

Simetrisks ledus kristāls. Avots: snowcrystals.com
Symmetrical ice crystal. Source: snowcrystals.com

The symmetrical shapes and endless variety of snowflakes are closely tied to the microscopic processes within water molecules and their paths through clouds.

Each snowflake's formation is a unique result of the interplay of temperature, humidity, and atmospheric movements.

While science has explained many aspects of these processes, much about these crystalline works of art remains mysterious.

Recommended articles

international collaboration research

#ChooseEurope: Latvia as Part of the European Research Area

In 2025, the European Commission (EC) launched the international #ChooseEurope initiative, aimed at strengthening Europe’s visibility as an attractive research area and promoting the professional mobility of researchers. The initiative is also supported by the Ministry of Education and Science, hig…

researchLatvia | Latvian Council of Science

December 12, 2025

natural sciences technologies

University of Latvia Researchers Launch a Unique Study on the Future of Peat Extraction in Latvia

Latvia is a European leader in the export of peat substrates, and calculations show that the country’s peat resources are sufficient for at least the next thousand years. However, in light of the European Green Deal, there is a possibility that peat extraction in Latvia may face future restrictions…

UL Foundation

December 10, 2025

natural sciences

LSIWC has launched a project on cultivating the Trametes versicolor fruiting body under laboratory conditions

What happens when a centuries-old medicinal mushroom, known from the forest floor, is encouraged to grow in a laboratory? Is it possible to replicate a slow and complex natural process under controlled conditions — and obtain high-value bioactive compounds from it? These are the questions the Latvi…

Latvian State Institute of Wood Chemistry

December 9, 2025

research achievements science communication

RSU Doctoral Student of the Year 2025 Creates an AI Programme That Counts Cells Faster Than Humans

"Science excites me, that's why I'm here! Already in school, I knew I wanted to work in research. It fascinates me because it's never boring: you constantly explore new things and uncover the unknown," says Edgars Edelmers, the energetic winner of Rīga Stradiņš University's (RSU) Doctoral Student…

Linda Rozenbaha | RSU Public Relations Department

December 5, 2025